| 363 ]
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INTRODUCTION.

Cresson has shown that the components of the velocity of a fluid w, v, w, parallel to
rectangular axes @, ¥, 2, may always be expressed thus

L RN ) AN AR.) AN o
u—dm+hdx’ fv—dy+)\ dy’ w—_dz +A dz’

where \, { are systems of surfaces whose intersections determine the vortex lines; and
the pressure satisfies an equation which is* equivalent to the following

P d dv\2 dyv\2 drv\2 I/ 2 dalr\2 d‘\[f 2
erv=—ab (@) +@) ) el @)+ () + (@)
where p is the pressure, p the density, and V the potential of the forces acting on the
liquid.

It is shown in this paper that an equation of a complicated nature in X only can be
obtained in the following cases (that is to say, as in cases of irrotational motion, the
determination of the motion depends on the solution of a single equation only):—

(1.) Plane motion, referred to rectangular coordinates z, 7.

The equation is somewhat simpler when the vortex surfaces are of invariable form,
and move parallel to one of the axes of coordinates with arbitrary velocity.

(2.) Plane motion, referred to polar coordinates 7, 6.

The equation is somewhat simpler when the vortex surfaces are of invariable form,
and rotate about the origin with arbitrary angular velocity.

(8.) Motion symmetrical with regard to the axis of z in planes passing through it,
referred to cylindric coordinates 7, 2.

The equation is somewhat simpler, when the vortex surfaces are of invariable form,
and move parallel to the axis of 2z with arbitrary velocity.

* British Association Report for 1881, p. 62.
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Suppose that in any of these cases any particular integral of the equation in X is
taken.

It is shown that the components of the velocity can be expressed in terms of A and
differential coefficients of N\, and that the current function is also known.

In the case of a fluid, part of which is moving rotationally and part irrotationally,
the boundary surface separating the rotationally moving fluid from that which is
moving irrotationally contains the same vortex lines, and may be taken at the surface
A=0.

Now, if the integral taken of the equation in N do actually correspond to a case of
fluid motion in which part of the fluid is moving rotationally and part irrotationally,
the most obvious way to find the irrotational motion will be to find its current function
from the conditions supplied by the fact that the components of the velocity are con-
tinuous at the surface A=0. Examples I. and III. of this paper have been solved in
this manner.

If after taking any integral of the equation in \ it be found theoretically impossible
to determine the current function of an irrotational motion outside the surface A=0,
which shall be continuous with the rotational motion inside it, then the integral in
question does not correspond to such a case of fluid motion.

In this method no assumption is made as to the distribution of the vortex lines (as
in the method of HeLwHOLTZ) before commencing the determination of the irrotational
motion. :

If, however, the rotational motion be known, the components of the velocity are
known for this part of the fluid. Let the components of the velocﬂ;y be expressed in
Crepsca’s forms, so that y, N, ¢ are known.

Moreover, let the forms be so arranged that the surface separating the rotationally
moving fluid from that which is moving irrotationally is the surface A=0.

X @
Then at this surface the components of the velocity are d——, X, °X, (Z

Now, obtain in any manner a velocity potential ¢ for space outs1de A=0 continuous
with x all over the surface A=0. This is theoretically possible always.

If the velocity potential so obtained make the velocity and pressure continuous all
over the surface A=0, then a possible case of motion will have been obtained.

The conditions to be satisfied in order that the velocity may be continuous at the
surface A=0 are that there %_? %_—Cg flz _—Czlg In order that the pressure may

d¢

dt

The most obvious way of obtaining the velocity potential will be to apply HeLm-
HoLrz’s method of finding the components of the velocity in terms of the supposed
distribution of magnetic matter throughout the space occupled by the rotationally
moving fluid.

It must, however, be remembered, as is remarked by Mr. Hicks in his report to the

be also continuous, it is further necessary that L—zzz all over the surface A=0.



OF WHICH IS MOVING ROTATIONALLY AND PART IRROTATIONALLY. 365

British Association on “ Recent Progress in Hydrodynamics,” Part 1,% “That the
results refer to the cyclic motion of the fluid as determined by the supposed distribution
of magnetic matter, and do not give the most general motion possible.” It appears
also from Examples I. and IIL of this paper that it is not possible to assume arbitrarily
the distribution of vortex lines, even when it can be shown that the equations of
motion are satisfied at all points where the fluid is moving rotationally, and then to
proceed to calculate the irrotational motion by means of the supposed distribution of
magnetic matter. For in these examples, values of the components of the velocity of
a rotational motion, satisfying the equations of motion throughout a finite portion of
the plane of «, ¥, are found. Thus the distribution of vortex lines, and, therefore, that
of the supposed magnetic matter over a finite portion of the plane of @, y is known.
The surfaces that always contain the same vortex filaments are found. Inside one of
these the supposed magnetic matter is distributed, the current function at external
points is calculated by HELMHOLTZ'S method, and it is shown that the velocity thence
deduced is not continuous with the velocity of the rotational motion at the surface,
which separates the rotationally moving liquid from that moving irrotationally.

Another way (suggested by CLEBscH'S forms) of obtaining the velocity potential will
be as follows :—

a? 2
Calculate the quantity p= _LET@;ZC_}_ X _I_ffl Z)g)

Treating p as the density of a materlal distribution inside A=0, taking no account
of the value of p outside the surtace A=0, obtain the potential of this distribution.
Let the potential inside A=0 be x/, and outside let it be ¢.

x’ will, in general, differ from y; first, because 'x may contain many-valued terms,
which may be denoted by P, satisfying LAPLACE’s equation; and, secondly, because
x—P may be the potential of a distribution of matter, part of which is outside A=0.

Accordingly, it is necessary to examine whether it is possible to find many-valued
terms P satisfying LAPLACE'S equation such that y'+P=y.

Then ¢+ P will be the velocity potential of the irrotational motion, provided that it
give zero velocity at infinity. _

Example II. of this paper is solved in this manner. It might also have been solved
by HeLmEOLTZ'S method.

The few illustrations which follow are a first attempt to apply the theory to
particular cases.

Example I. treats of the motion of an elliptic vortex cylinder of invariable form
parallel to one of its axes with arbitrary velocity. The irrotational motion outside
the cylinder cannot be supposed to extend to an infinite distance.

Example II. treats of KircHmOFF's elliptic vortex cylinder, in which the angular
velocity of the rotation of the cylinder is a function of the vortex strength, and the
axes of the elliptic section of the cylinder.

* Report for 1881, Part L., p. 64.
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Example III. treats of the revolution of an elliptic vortex cylinder round its axis,
where the angular velocity is not restricted as in the last case. The irrotational
motion outside may be supposed to be limited by a smooth rigid confocal elliptic
cylindric surface, rotating with the same angular velocity. The last example is the
particular case of this, obtained by supposing the elliptic section of the external
confocal cylinder to become infinite.

Example IV. treats of the motion of the fluid in a fixed circular cylindric surface,
where the vortex strength is any function of the distance from the axis, the irrotational
motion continuous therewith being supposed to extend to an infinite distance.

Example V. treats of a possible case of rotational motion inside a certain hollow
smooth rigid surface of annular form, which moves parallel to its straight axis with
arbitrary velocity.

1. CrEBscH’S* forms for the components of the velocity of a liquid u, v, w parallel to
fixed rectangular axes , v, z in space are :—

A T dx A dy Ay
u=gr NG v=g G s =gt

where the surfaces A= const., y= const. determine by their intersections the vortex
lines, and always contain the same particles of liquid.
If F(\, ¢) be an arbitrary function of A,

d - d oF (A, oF(\, ) dh
u= e\ Y = =0, )+ (T ) G
dp’

do TN 0y

and similar expressions for v, w.

Thus these expressions for the components of the velocity are still in CLEBSCH’S
form.

N, ¢ are each functions of A,
X’ satisfies the same equation as x.

* Taking as independent variables three families of surfaces, always containing the same particles, and
the time, the writer obtained independently Crepscm’s forms in an article published in the Quarterly
Journal of Pure and Applied Mathematics, February, 1880, vol. xvii., entitled * On Some Properties of
the Equations of Hydrodynamics.”

A demonstration of the same forms for any fluid in which the density is any function of the pressure
is contained as a particular case in a paper entitled “ On Some General Equations which include the
Equations of Hydrodynamics,” which is published in the Transactions of the Cambridge Philosophical
Society, vol. xiv., part i., the writer having previously seen Crussci’s paper, ¢ Ueber Die Integration der
hydrodynamischen Gleichangen,” ¢ Crelle,” Bd. lvi,, p. 1.
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Moreover, since F(\, ) is an arbitrary function of N, ¥; 1t can be so chosen that \’
may be any required function of \, 1 ; .e., any vortex sheet.

Therefore the N in CLEBscH'S expressions for u, v, w may be considered as the
surface of any vortex sheet; and, consequently, as the surface separating the
rotationally moving fluid from that which is moving irrotationally.

Therefore, if ¢ be the velocity potential of the irrotationally moving fluid, all over
the surface A=0, supposing the motion continuous there ;

dx__d¢ dy_d$ dx_ d¢
de™ dae’ dy” dy’ de” de’
Since also

o= o (2 2)

in the rotationally moving fluid, and

v (4 (]2

in the irrotationally moving fluid, it follows that the condition for the continuity of
the pressure at the surface separating the rotationally moving fluid from that moving

4’_._
= all over the surface A=0.

Now suppose that there exists a solution of the three equations to which x, \, ¥ are
subject as given by CLEBscH ; then to find ¢, it is necessary to find it so as to satisfy
the above surface conditions.

In any case in which y is the potential of a distribution of matter inside the surface
A=0, together with many valued terms satisfying LAPLACE'S equation, then ¢ is the
potential of this distribution calculated for a point outside A=0, together with the
same many valued terms, provided that it give zero values for the components of the
velocity at infinity.

With regard to the supposed distribution of matter, its total mass must be zero, in
the case of an incompressible fluid.

1rrotat10nally is that

For total mass of supposed distribution of matter ==— Zv'r” o$ dS, the integration
being extended over the surface A=0.
But this = ——— (total flux outwards across the surface)=0.

4r
Therefore total mass of supposed distribution of matter =0.
2. . Plane Motion. Rectangular Coordinates.
In the ordinary notation the equations are



368 PROFESSOR M. J. M. HILL ON THE MOTION OF FLUID, PART

e

, (P0) =0

v dv dfv
%_I_u %_l—,v dy

B4 (o) o

From which can be deduced

( +u—+vd>{% Zj} 0

14

Now regarding this as a particular case of motion in three dimensions in which
w=0, the motion being parallel to the plane z=0, it is possible to put by means of
CrEeBscH's forms ’

I RA AP N
u= gt g v=g, g,
Therefore
ay iy, [EY-Tl_,
G m T, ———ﬁ/—p——y—ﬁ

This result has been deduced from the three equations of motion, and CrEBSCH’S
forms for the components of the velocity.

But it can be deduced from the equation of continuity alone and the following
equations known to be satisfied by A, .

dan dan an
a TVt =
Therefore

D N
at dy dwdt
o o iy
dt  dy d dx dt
U= i dn and v= N
de dy de  dy
ay o
de dy de dy
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Therefore

AN dr an A arn  dh
" dadt Ey_ T dt dxdy T dt _d_y
oy ay (T v oy ||ty v | | B o
du dv | dedt dy Tdt dedy | 4 dt dy | g | de dy
T dy Y Dbl ay dy
de  dy de  dy de dy
o dy Ay
de  dy de dy
e R SR M.
dxdy dt dex dydt dx dat
ey oy [May _ev| |ap _av| | & a
dedy — dt de  dydt de  dt | g | dr dy
+ - d T o Py oy dy
de  dy de dy de  dy
Ay o dy
dz  dy dz  dy
But from the equation of continuity
du  do 1/d d d
wta=platuatvy)e
Therefore
1/d a a
—latutog)r
&N dr an "\ an  dr
T dzdt  dy dz dydt | | dt dy
_oy ay (Mlay _ay| | o oap | | Do
dedt  dy dx _dydt T at @— d dr dy
- A dn e Py ay
dr  dy dz dy dz  dy
o 2y oy
| de dy de  dy
a\ an
dz T dt
oy o a
de < dt | 4| dv oy
| Py ay ay
de  dy de  dy
LA
de dy

MDCCCLXXXIV., 3 B
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Therefore
Y
1/d  d ., d\ _ 1 4, 4, d\| dz dy
,;.(dt"'"‘ o T’ czg>f"‘_ an a <ozt+“ da T dg/) Ay dp
dz  dy dar dy
Ay dy
de dy
Therefore
N dy A\ dip
a a ., de dy dy dw X
<dt+udw+u 7 )—-——————————P 0 as before.

But since also

a d a
(Zl—t-l_u Ea;_!_v (—Zg—/> A=0

and
a a d
(@tezto ;@) =0
Therefore
dn dgp AN
‘M—;—M:: some function of \, Y= f(X, )

3. In what immediately follows p will be supposed constant. Using suffixes to
denote differential coeflicients

Ay — M =f i ()\: '7”)

Now let g(\, ) be a function of \,  such that

og(\, ‘lf)= 1
oy SN )
Therefore
Y og(\,
x( g\, ) %) , < 9(;:’,‘!’) %>= 1
therefore
)\z(bg(h V) 4 by(h ¥) ) }\y<6g(7~ ¥y, +?>9(7~ ¥) x>=1
therefore

Mgy—Ng.=1

Treating this as a partial differential equation for g, the auxiliary system of
equations is
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‘Whence each of these
_ Mol + Ny
- 0

Since, in the differential equation, there are no differential coefficicnts with regard
to ¢, A=const. is one integral of the auxiliary system.

By means of the equation A=const., ¥ can be expressed as a function of the constant,
x, and . As the constant will have to be replaced by \ afterwards, it may be said
that y can be expressed as a function of A, @, ¢ ; and when this value of y is substituted

in —)\,, let the result be denoted by (—)\y)%. Let differentials of the variables \, «, ¢
regarded as independent be denoted by o\, oz, d¢ respectively.
Then g=— (Z%+ an arbitrary function of \, .

‘ SF(, £)

It will be convenient to write the arbitrary function in the form oy

Therefore

_ SF(M, £)
9= .[ O );‘ o

Therefore g will appear in the form G(\, , t)+bF(x )
The equations of the vortex sheets are functions of ¥, X and therefore of g, M
Now

N~4ul, v, =0

and
9r+ug.+vg,=0
therefore
G | 5G| | 8F(, f) | T, 1)
o Ton Mt son T one M
oG 3G, | SO 1) FFO 0,
+< ot o ‘”> (bx)‘?'l' ON? y>—-0
that is
0@ | 8F(), t) oG 5”1(7\ t) N
T o T +< e )O‘H' ket o) =
therefore
TN, 1) s _
+, YISy +“bx_0
But
oG_ 1
o N,
therefore .
3G 8T, 1)
u=\{5+ g )

3 B 2
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substituting this value of u in the equation

N ud-Frh, =0
it may be shown that

S VN <b(} 3F(\, z)v>

A o T s

To determine the current function A, there are the equations

P

_dA_ M (8 f b | 8T, £)
T z( sl s | oMt
t

From the first of these equations

)
A=y f" 7y

J' /)”

e, 0

where  is the symbol of an arbitrary function.

Now 5 J o i is a function of A, «, ¢; and ¥ occurs in it only because it is contained
t
in A, therefore

o[ o
o 0 | Jox
but the arbitrary function of x and ¢ may be supposed included in ¥ (x, t), therefore

A= s

fhydy —5[ o

o ox
—b—t (_M—)%_ =&f b)\f( J)2+a1b1trary function of « and ¢

O‘J)"
therefore
aA_SFO, 0, 4 b,
de ™ Aot Ap— d bt[ [ (M)Vl'dx (e, 2)
But
ad 0 o
&b T o
d 8

s
o
-+
e
o
P
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whence
d_d_nd
8 dt N dy
therefore
dA_¥T0, 1) > B
de~ O\t Ao (bx_l- ”bx)bt,( ,( O )’a; (bx_l_)‘” bx)‘l’(x’ t)
_VF O, of o
Y A’_bt.[ (x) ”bt[(x )"+bx (2, 1)
But

B L\ (o (d N d\L
f (xy)x f o\ bt((xyﬁ)_f oA (dt Ay dy)M
=I— ——(—%)—I—a,rbitrary function of z and ¢

Before the last integration can be performed — x dd<—;—;~‘> must be expressed as a
Y

function of \, z, . If —X‘ be expressed as a function of A, «, ¢ then y can occur in it

Y
1Moy, b (-Y)
ay _7‘7 e _Xy

only through N.  Therefore
Therefore
5 8 YRR
bt.{(x )w Ib)\ 5&<_7\Z>_ _M_HD(OC’ 2

where @ is the symbol of an arbitrary function.
therefore

dA_, (8 ST, £) 5
dz M( J. x)Q S\ot >+M D(z, t)+gcllf(m, t)

Hence choosing the arbitrary function y (z, ¢) so that
o
gx—;‘lj(x’ t)::(I)(w, t)

this value of (;3 agrees with its known value.
And

Y(e, t)=fb:c<1>(m, t)= f ox b[ b?)x f<x5>: bw:fbw@:)% +éf I(M)A—I-PO\ £)+Q(z, ¢)
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where P and Q are arbitrary functions introduced in consequence of the change in
the order of integration.

Therefore
_SF(, D) A\
A=E004 bw<M>f PO, )+Q(a, 9)

Comparing now iﬁ and % with their known values, it will follow that dQ(x _ =0,
therefore Q(x, ¢) is a function of ¢ only and may be considered to be 1ncluded
in P(, ¢).

SFON, 7) : . . .

As o Mmay also be considered to be included in it, it follows® that

=K\, )+ m«(%}

v/t
[This form of A may be obtained much more conveniently thus.

. aa dA,
Since N~-ud,+2\,=0 and u= o v=— it follows that

adA dA
NGy M= M=0.
therefore

A=K(x, t)+J.Sac< ,);

The same way of obtaining A is applicable to Arts. 5 and 8.—August 30th, 1884.]

% The form in which A appears does not appear to be related to y and —=z in the same way, as would

be expected.
But denoting differentials of X, y, ¢ by &\, 8y, ét, it may be shown that

A\
A=M(\, t) —-j-By (r);/
The two forms of A will agree if

MY, (M)A - ;
jém (Ny){ +j5y N = function of A, %

Suppose that
o 5y( ) =R, then o_@_)ﬁ
T
But d o d @ d ) T N d
d ‘
=M dy 3y+7‘3"67»5 Et—‘*"”‘a)v whence g =7 =57 i
therefore
R 2y AR
dy "N de T A
whence
R:-—jbw —) +O(, £)
therefore

o o =

so that the two forms agree.
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But v,—u,=f(\, 1[;)— some function of A, g,
therefore

where H is an arbitrary function,

therefore ]
(astip KO0+ ol =t {55 =[351 ]

8(,

The arbitrary functions K(\, ¢) and 2 being implicitly contained in the integrals

need not be expressed.

4. Now suppose that there exists a vortex of invariable form which moves with
arbitrary velocity along the axis of 4. Let the equation to its surface be a function of
x, and y—Y only, where Y is an arbitrary function of ¢ only.

Let

A=L(z, y—Y)

then
aL

A= &y

)\t—'( Y]
therefore

7\,; 5

N -Y

Also y—Y can be expressed as a function of A\, « only from the equation
A=L(x,y—Y).

Therefore A, can be expressed as a function of M\, « only, not .

Therefore G(\, «, t)= —I( bg;)\

x
v

. . A .
does not contain ¢, since (A,)z does not contain ¢, and

may now be written ()3

Therefore
8G_
8

In this case the equation takes the form

o 7 L o R (e

oA
<%+§;)K(h, t)=H< [t t>>

therefore
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and now
_AfKO‘ H_a ( (\, t)—wY)
. SR\ !
=¥ 220 )_—é—<K()\ t)—mY>
therefore

K(\, t)—aY

is the current function.
Of course this could have been directly deduced from the form of the current func-
.. . . .\ g
tion in the preceding article by putting ;f: —Y.
Y
5. To obtain similar expressions in polar coordinates.
Let R and © be the radial and tangential velocities.

Therefore
u=R cos 0—0Osin 0, v=R sin 640 cos §

sin 6 cos @

\,= cos O\, — )\o, \,= sin O\ —|—-—~)\9

Nty — M= W’”

]
M+ul4oh, =N+ BN ;;)\o

In this case the equation corresponding to the equation in g of Art. 8 is \,g,— Ag,=1-
The auxiliary system of equations is

Let differentials of the variables \, 7, ¢ when regarded as independent be denoted by

O\, or, of respectively.
Therefore

(& SF(\M 0 5F(x )
—; At LS

Then since
® ®
M+RA\A+=\=0, and g/+Rg,+—g,=0
it follows that

+ Stbx R_— 0
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therefore
o*F
R= < o bsz)
— My (G, PR
0= _’"xe_)"( o T am)
But
Vp—Uy= i(R sin 0+ ® cos 0)— d (R cos 0—® sin 0)
=1 (R sin 64 ® cos 9)-|—9x (R sin 0+ ® cos 6)
_Tyc_i;(R cos 0— O sin 0)— Qy@(R cos 00— sin 0)
_d0_1d_ e
Tdr 7 df
therefore

nmy= | 7r)~ Zﬁ"}

To determine the current function A there are the equations

1dA_1 <52F(x,t) > J‘rbr)
) _°

rdo ondt &t O»o)f
_GA_ M (VTN EJ' ror
ar~ g ’( ot t) ()7
12

From the first of these

oF(\, 8) o 7Or
A==y —B_J jo)¢+¢( t)

where ¥ is an arbitrary function.

Therefore
dA_ OF(\, 1) d 3 J’ -"rbfr
dr™ O\t A= dr 8t ) )‘+ IP(
But
d & )
o TN
ad
@~ M
d o o
@ T
whence
b_d_md
o di A
3 ¢

MDCCCLXXXIV.
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therefore 5 X o
AA_BF( 1), 8 [ fror 8
dr— bt brbt[b)\{ (xo)? M bwf o\ f (Mo )*+b v 1)
__OF(\ 0) ofron ror
— et T bt."(y\g)ff )\"bt,(()h )A+br¢( f)
But

o[ 7oN o/ 1° l g_}ii 1 rS)\._(i R
t
Of_M\_._ M .
}'9 bhbx( M>_ —1 7w+<I>(fl , )

where @ is an arbitrary function.

Therefore

—_ & g i
dr— oot ot (M)r A (p(?’ t)'l‘ M‘l’(ﬂ t)

an_, (521?0 £ b [rér >
. . . o dA
Choosing the arbitrary function ¥(r, ¢) so that ™ Y(r, t)=2(r, t), the value of o

agrees with its known value.
And since

(i, 1= [ora(r, )= [or 2 " 4 [ror (;‘) =[ror(}): +8J8xf:b7)A+P()\ H+Q, )

(7\.9): 8

therefore
SF(\, £)

a=G0 abr@«j PO, £)+Q(r, 1)

and reasoning as in Art. 3 it follows that
A
A=K, 1)+ m(ﬁ)
)\'9 t
And since v,—u, is a function of \, g, it follows that
PN PPA

2T =HM 9]
therefore

<d92+1 dr ';—2332){1{()\’ t)+[’"br<§i>g }= H[)" {?%_t)_ji;‘:ﬂ

6. Now take the case of a vortex of invariable form rotating about the origin.
Let its equation be
A=L(r, 0--w)
where  is a function of ¢ only.
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Then as before

M
VR
and
olx
o= 0
therefore

MBSK(\ ) 1 d ”
R=""% “21?2<K(}" t>_2“’>

o=rs 0= 2, - 7a)

S\ dr

and the equation in N may be expressed in the form

<d72+r dr %%)(KO‘ )= "“’>~H< [ (;i;“_l_mx t)>

The current function is
2
K\ 1) =56

To obtain this directly from the foregoing article, put for = 1ts value —a

7. To obtain similar expressions when the motion of every element of the fluid is
in planes passing through the axis of 2z, the motion being the same in all such planes

Let 7 be the velocity away from the axis of 2, and w the velocity parallel axis of 2
The equations of motion are

%’E"’T%"‘w% d,q +V>
%(c%-l— dr+ dz> + +dr+~_0

Differentiating the first equation with regard to z, the second with regard to » and
subtracting, it can be shown that

dr  dw\/dw dr a ad d\/dw dr
<d¢+ ><d¢ dz)+(zt+%+%><d, d) 0

(actmatei) =)= i) T -2)

therefore

dz
therefore

1 dw dr dw dr dw dr d
(dt_l_ d'r+ dz><d1 o—l;> <0lr dz> 7‘p<d? dz>{<dt+7d1+w;l;>p}
3¢ 2



380 PROFESSOR M. J. M. HILL ON THE MOTION OF FLUID, PART

Observing that
1

(dt+ Tar a dz>7 Ty
This may be written

(atrirt vl \a=a))_(atrates)

Ljdw _dr P
r\dr dz

in {55

. . , dy . d
This becomes, on putting in CLEBSCH’S forms, Tzzz%—l— )\—‘-Z:lf , W

(it it Lol o —ar ) =0

And as in Art. 2 this result may be deduced from the equation of continuity and

ol

therefore

X\
T dz +A dz

the two equations 7L—I—-T@+ dk—O a %\%-}-T%ﬁ—l—’w(z—f—zo only.
8. Hence, supposing p constant
'4" z‘!’o 1
A,
A 7 N
oy

A9, —}\zgrzr

Let differentials of the variables A, r, ¢, when regarded as independent be denoted
by o\, or, ot respectively, then

_ ror | OF(A, ?)
9= J‘ (M)A'I‘
( , ,t)—i—bFQ )
and oG | OF(, 1)
"’
= )‘{bt"' Ston }

Y S5, 1)
'”’—_x,,_ {bt+ Son }

To find the current function A there are the equations

1)\ o’F(, ©) _J’obo>
P\ ot sty

Ay 1 )V(bgF(h H_o J’ rér _laa
- ONOE ot (}»z);\
t

1da
r dz




OF WHICH IS MOVING ROTATIONALLY AND PART IRROTATIONALLY.

From the first , N
oF(\, ¢
A= e

O )r
therefore
adA__ O*F(x, ¥) a 6"’ ‘(7'67
dr— 8\t T drodt Qﬁ+,¢()
But
d & 0
A VR
d 0
Y
d o o
a5 TN
whence
o d ?», d
ot dt A, dz
therefore
AA_¥FQ D), { o F«ba
dr— oot T bt (M)r ’bt (M)"-l_éfr (r 1)
But
o[ 7OM o/ 1 d N d\1
- = |70\ — =70\ | =——
o=l =l (G ok
12 (M)t ot (M)r dt A, dz/\
i A\ _(ron (N
_]rb)‘( x2+x3> fx dz<—7\z>
— M_ M
_Irb)\ 571(-&)_ 7'M+<;D(fr, t)
therefore

N I b
dr _)"< Nt btf (Mp) —&(r, )+ ¥(r, 1)
Hence, choosing v(r, t) so that

&(r, t)—— (. 2)

and therefore

381

¥(r, t)=[¢>(r, t)or= [ rbr( > +J‘b ~j‘ ron I? 8¢<%>;+ gISXIg STH- PO, 6)4+Q(r, 0)

)r

the required form for 0;—17\ is obtained.

SF(\, )

A==0y [¢3r<’i>§+P(>\, £)+Q(r, 1)
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and reasoning as in Art. 3 it follows that

A=K, )+ frbfr()—;f):

%] t

But <di0—c—z—> is a function of A, g.

dz
PA_LdA | PA
7'2< o dr+ d22> H) g]

:'2@22 } di +@>{K(>\ t)+fvbv< >;} H\_)\,.‘i}%ﬁ)_ L’)‘i?’g_

Therefore

therefore

9. For a vortex of invariable form which moves parallel to the axis of .

A=L(r, 2—Z)
where Z is a function of ¢ only.
As before
N_ g g 2
i_——Z and o ="

1, SR 1 a0
T—r - dﬂ< O 8)=3 Z)

: 8RO, H_ 14
w=Z—1 )\, o) (KQt)z )

Therefore the equation in N becomes

L1025 ) S0 0 2o 5472

ne.,
1d\, 1 AN SFON &) [ rdr
{(5)+samh(Ee o5 2)=m( FRE- %)
therefore
(@, & 1d _ SE(n 1) (0
r? <dz2+dr2—r dr)(K(A’ H=H ( T I(?\Qi‘)

The current function is
2 .
K\, )—5Z

To obtain it directly from the preceding article, it would only have been necessary

to put
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Tllustrations.

10. Example I. Take the simplest case of the equation in X given in Art. 4, viz.,

a2
<dx2+dy > A=c¢

It is required to examine whether A=(f )< +(y— ) ) can represent vortex sheets

where ¢ 1s a constant.

in a motion, part of which is rotational and part irrotational (f, @, b being constants).
Substituting in the equation

@) )=

Also
2(y—Y
w=f. (yb2 )
v=Y— 12

To find ¥ it is necessary to solve the equation

Ay | 2y=Y) dy 22\ dyp
dt +/ ¥ dx +<Y fa2> dy =0

The auxiliary system of equations is

dt da dy gw

1 2f(J—Y) - 2f.7c

One integral of which is

(f)<a2+(1/ — Y >— const. =m

57 sm V S = const. =n

where for m must be substituted its value.
Hence

and the other
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Whence
(f’_”f (y —Y)2> W y=Y
a2

v )de T 2f
N T

Substituting for » and » in the dynamical equations

2;—]— A4 ::z—;%; (@*+ (y—Y)») —»Y + an arbitrary function of ¢ which need not be considered.

Now the equation determining x which is

d a d
lef+u d—§+v —éﬁ:%(uz—l—vﬁ)—(]ﬁ—l—V)

becomes

dy 2 (y—Y) d . ofu\d
x_l_f(y )x_|_< ’f‘gf)?{zif

1\ /22 —~Y\ 97 . . )
—2f2<a ><”_ (ib_z_)_>__ a{ Y +(y—Y)Y + a function of ¢.

The integrals of the auxiliary system are

(f)< +(y Y)>-— const. =m

ab ¥a

t—— sin"1= e const. =n

2f @

ma?-——b

X=73 sin ——(t n)4b /\/ Y cos (t—n)+ a function of .

Hence one value of the integral of the equation in y, which may be called y/, is
obtained by substituting for m and n their values, and is

o —D2 .
=" foly—=V)+Y(y—Y)
Whence
’ a?—0b?
Xx': pETE) f( )
x}:%ﬁm-l—Y
But
20—-Y
w=f 21 (?/b2 )
v=Y L2
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If now e be some constant, then

u—e< o+(y b2s —1>%—x'z=(?/— )(2f+faa;§,f>+ e
o= St T 1Yy —ti= = £ ety
92 (a®+ 1)

Choosing the constant e=— , the right hand sides of these equations

a’t?
become ey, ey, respectively. Therefore

=_d_<x'—2f Ly il 4,) 2f2“2+52/m2 (y-—Y)ﬁ_l)ql_\_lf

dx a?b® o \&@ T P du
d a®+b? A+ (2 (y=Y)* i
Q):"( — 2 a?b? 4’) 2 a?b? <a2+ e 1)@—

Putting in for x’ and ¢ their values, it will be seen that for the y of CLEBscH'S
forms of expression for the components of the velocity, it is necessary to take

&
o —b : LB ab . a
—(%;j:m(y—Y)+Y(y—Y) 2f* — 5}811& 1\/ +(_g/——Y)2
)

b2

The terms, containing ¢ only, may be omitted.
Thus if p be the density of a distribution of matter of which y is the potential

1Py Py\_ 1 2@=b)  a(y—Y)
T dar\da? dy 4 o'bt 2 (y—=Y)\?
AT
therefore
e ad=b a@y—Y)
P="4n 0% ( (y— Y)2>
a2 b*

The potential of this density (see Art. 15) at an internal point is

&
¢ a—b cab| . _, a -1 &
5 ety dy—Y)+5 |sin e RV Ty
a2 TR

MDCCCLXXX1V., 3 D
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Adding to this the cyclic term

cab . _y z
2 VY
<g1v1ng a cyclic constant —mabc=mwab(42{) where 2{= dﬁ—%) the expression
obtained is
€T
ca=b cab . _y @
(?/ —Y)+- sin P2 (j—Y)
a? b

This will not agree with the value of y, unless

cab__ f(a*+)
27 ab

Y=0

The first and second equation require a=>.
Hence this method will not lead to a determination of the irrotational motion out-
side the cylinder. It does not prove that there is no irrotational motion outside

continuous with the rotational motion inside the cylinder.
Supposing HrermuoLTZ'S method applied to this case, it would be necessary to find

a value of A which is the potential of a distribution of matter of density —- inside

4ar
the surface
(y—Y)? Y)2
a2+ =1.
The result is that inside,
cab 22 (y—Y)?
[C_I_a(a + b)+ bla+ b)]

and outside,

(1 —=Y)? 2 V2
=‘i‘2‘-b[0'+ log (v/@Fet v B+ U0 ——————————‘/wlﬁ),ﬂi’g“)(—x*—m(y ) )]

a®+e D +e

where

G=Yy_ ,
a2 te T Pie 1, and C and ¢ are constants.

If the constants C and €' be properly determined, these expressions will be

continuous at the surface ~+(y L% =1. Their differential coefficients are also

continuous.
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cly—Y) d\ —cbw

dA
Now = atb T de—atb inside the cylinder.

At the surface of the cylinder, - A and 2 o A pave the same values whether calculated

from the value of A inside it or outade it.
In order to have the rotational motion continuous with the irrotational motion, it is

necessary that all over the surface of the cylinder

A=) _oaly=)
T a4b
o e cba

Y- @ a+b

But these equations cannot be satisfied unless a=>, Y=o.
The solution may, however, be completed for a finite portion of the plane of x, ¥
outside the cylinder by means of Example III. which follows :—

In Example III., put =0, this will make

A=A of Example ITL=f"=" log (v@F et v/IF o)+ 5ms(a— (y—Y))

— B TFI+ YY)

ab(a®—b?) at+e
where

G-vr_,
+e

2
a?+ e+

Therefore the current function A of this example is

A=V =22 log (V@ F e v/ BPF O+ 20— (y—Y)

A& +0%) 2 (y=Y) S
—ab(a2—bﬂ)‘/(“2+€)(b2+e)< te ‘?ﬂ?>"xY

This is equivalent to the form in the abstract printed in the Proceedings.
For the motion to be possible, it must be supposed to be confined to a cylinder of
finite section, appropriate surface conditions being supplied at the surface of the

bounding cylinder.
11. Example II. In the preceding example it was shown that none of the methods

would apply for the whole of space surrounding the rotationally moving liquid.
Knowing KIRCHHOFF’s investigation of the rotating elliptic vortex cylinder, let the
form of the equation given in Art. 6 be considered, and the following simple case of

it taken.
1d 1 d? ”
<d72+;?l7+;55§5><)\_:2_w>_0

3D 2



388 PROFESSOR M. J. M. HILL ON THE MOTION OF FLUID, PART

A particular integral is

r? cos? (0 ) , 7 sin? (0—w)
=] el

if 2f < ) 2w_c(_—2Z of KircumOFF's “ Vorlesungen iiber Mathematische

Physik.” Zwanzigste Vorlesung). Therefore ¢ is constant.

Let o', 3/’ be the coordinates of the point @, y if referred to the principal axes of the
ellipse which rotates with uniform angular velocity & ; « ¢/ the components of the
velocity parallel to these moving axes,

Thus

a'=ux cos oty sin &t ; y'=—x sin ot+y cos ot

The velocities along and perpendicular to the radius vector are

1d 26 1 1 .
R=" @<>\_’-2‘—">= —( f)<a-2—b—,2>¢ sin 2(0— o)
ol fyomro-s

=R cos (§—)—® sin (I—w)= (—f —o )y
/ : N\
=R sin (0—w)+0 cos (—w)=— (a—g—w)w

u=u' cos ot—12 sin ot

v=u' sin &t+2" cos &t

=0 (5+%)

To find 4 it is necessary to solve the equation

d¢+ dw+ ‘P =0

The auxiliary system is

It will be more convenient to obtain ¥ in terms of ', ¥/
Since

dr’'= cos et.de+ sin ot.dy+oy’.dt
dy' = — sin &t.dx- cos ot.dy—aox’.dt,
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therefore
dt_ do! _ dy _dy
17 wcos Gt+vsin &t +dy —usin ot +vcos dt—aox’ 0
therefore
i dd’ _ dyt dy
17 w4y v—adx'~ 0
therefore

dt__ de _ dy  dy
1™ 0

y/— PO
o~
The integrals are

N (G+5)=m

t—g—’;sin‘l <%’ ,\/ %):n
(

therefore

To find £+V

. d d a\ . . . , . 4 .
First express <%+u&;, +v@> in a form in which &', ¥, ¢ are independent variables.

d, d, d\_d, i d df d, (& d  dy d dr d | dy d
<dt+“dx+”dy)—dt dt v dt dy’+u(da: o dxdy'>+”<?é§2z17 Zz’;?@f)

i ' . ..d . .. . a
=&;+(wy’+u cos &t -+ sin wt)@,+‘(—wﬂ—zb sin &¢--v cos of) ay

d ., oad o ond
=, + @y +u)+(—ox +)5,

_d L D d
Tdt T » dd o dy
therefore the equations

du ) ey e d(p
dt+“m+”dy——m<‘"+v>

o dv dv__ _ d(p
i TtV = < "‘V)



390 PROFESSOR M. J. M. HILL ON THE MOTION OF FLUID, PART

become
d oy d U ;
<d—t {JZ/ da’ f; dy >(u o8 &t —1v’ sin &)= — d;(%'l'vj
(,% %}/_' doal; 2§f/ dd )(u' sin @t cos Cbt)::—gg;(%'{_V)
therefore
in oty L4 o (A e P
sin ot.y <a2b2 ~5 )-I— cos wt.& <_(Fb—2 ?_wz);_;<;+ )
2
— C08 6t y( i;; 4fw+w >+ sin cbt.x'( 4{2;2+4f°’ -2>=_d%<§+v>
therefore
, 4f2 4f- . - d 'p . .d e d p
m( o’ 71760_(02):_ 08 wt—d?n<;+v>_ sin wt@<;+V)=_d?<_’;+v>

’( 4f2+4fw 5 >=+ sin a‘»t%<€+V>— cos cbt%(%+V>=-—gy7<§+V>

a?b?

therefore

a® 't 2 2

4 -I-V—w (% b? 2fw+2f >+y’2<1—c{>2 wa-l— f2>+ an arbitrary function of the time.

To find ¥

2.9. V=1(y2 oy X dx  dx
, TV=3( ) — G —u g =y

The auxiliary system of equations to find x is

At dw _dy dy

1 w w %(u9+1;2)—%—V

Substituting for u, v, ‘%-I—V their values, there may be substituted for these the

equations
dt__ dd _ dyf dy
L7 o 8 7 o (U YN\ _ S S
wh v (i3 )l
One integral is
f pe +f —_m

Another is

t—;—i;sin‘1 <%, /\/%)=n
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To find the third, substituting for ¥/ its value b /\/ m_a?

391

S oo
dx dy
2«/f —B (A2, 2"
@\ @ a?
therefore
2__}HR
X= /Tl M=
therefore one value of x satisfying the partial differential equation, which may be
called y’ is
—b oy
x=f.2 TR
Also
LI
=0 (5+%)
m/
Y=t —sm R
T of N
Vs
Whence
2Ny
( +b2>ozx"‘ of
bg)tiy’_ 2f
Thus

SN AN

If, therefore, e be put =2f ( _J —.f->
’ d Vi . /2 /2 d
u'= X +6¢)+6<§;+‘Z—2— >d;l'

d,, Py \d
= o en e+ —1 )5

Thus the proper value to take for the y of CLEBSCH'S forms is x4 ey  Omitting,

as unnecessary, terms containing ¢ only
/

@
-5, VA a
—f P w?/ b< —;—g&) sin 1—‘—“—‘;72

/\/a2+b2
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d*x d*y &
p= (dx2+ > <dx’2+dy'2>

-l )

a2+_b_2

Calculating

_ _0_<1 _1_>___9£zL_
T4\ @?)fa®  y?\
(G+5)

The value of the potential due to this density is the single-valued expression given
in Art. 15, viz. :—

w/
¢ca—b cab a 2
680 py a2 - Z
Farsl Yty | g N ity
al2+b2

/

Add to this the term c%b sin‘]—\7—72—_r,—‘/2 to give the cyclic constant ‘- ( 2ar) =mab.2{

in KIRCHHOFF'S notation ; then, in order that what is now obtamed may be the same
as x, 1t is necessary that

—P_cu=b
aW ~%atb
s )b
ab(w—af_b%)— 5
the latter of which is known to be true, but the former will not also be true unless
. 2f cab ’ )
=TT (a+b)z—2§ @ +b)2 in KIRCHHOFF'S notation.

Up to this point no relation has been assumed between & and f.

Supposing, however, this relation satisfied, the velocity potential at an external

point is obtained by adding the same term c—;—b sin™* —\—/*,2—_;—,-2 to the potential found in

Art. 15 for an external point.
Thus velocity potential at an external point is

cabx'y’ a® 4+ b2+ 2¢ +@ sin-1 x
A= \2/ (@[T +e) WL
. . x? y'® , . .
where € is a root of the equation vt pr=b the axes «, 4/ turning round with

2&ab
(a+2)?

The expressions for the velocity, which may be deduced from this, might also have
been obtained by Hrrmmorrz’s Method from the current function A which is the

angular velocity &=
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) ’
potential of the density —f; throughout the cylinder iﬁ-%

in Example I.

These values make = 5 -l—V continuous at the surface.

2
; =1, and which is given

12. Example ITI. Supposing the relation found in the last article between f and &
not satisfied, it is required to find a solution if possible.
Using the elliptic coordinates e, v which satisfy the equations

where

Hence

o n e
at+te

Ve

e + Y
@?4+v ' P+

=1
—b’<e< o
—at<v<g —b?

g @EHO(@+Y) (B te(=F—v)
U — ag_bg 2 - 02—[)2

and putting

a=log (/@ Fet VBFo)

—

o -1

B=— tan T
. av

LAPLACE’S equation becom os + T 0.

If 'V be a function of € only, then V=Ca+C"

Similarly V=CB+C’ is a solution.

But if V=E.U where E is a function of € only, U a function of v only, then

olE

Suppose there exist a value of E such that = pQE

Then

de S +pU=

Therefore if

E=Aer+Ber
U=A’"cos pB+DB’ sin pB
E=A(v o+ e+ V04 &)+ B(V P+ e+ /0P +e)?

U=A’cos {p tan™1 /\/fa%’} —B’ sin {p tan™! V

MDCCCLXXXIV, 3 E

-—bz—v}
a*+v
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‘When

p=1, E—“C\/a?—l-e—l-D\/b%—l—e

a? 4 b?

p=2, E—o<e+ )+w<a@“425(6§+-e>'

a+b>

U=C’<v+ D'V (@) (= =)

and so on.
Now suppose it required to express A as the current function of an irrotational

motion under the condition that

s I

A=fﬁ+f%g -20—’( /z+y ) wherever %-{-%:
Assume if possible

P = @)

=A+Blog (v a*+e++/0*+¢€)+ 1: <€+a +0

oo rRor )

The form of the expression on the right-hand side shows that it is the current
function of an irrotational motion.

But
S\ AP\ =B, (a1
(555" )= 1 == ()

PP P ( P
v = e b9+e>

therefore the assumption is

" Y20 m
foatSp—s @+y7)
=A+Blog (v a?+e+ /62+e)—l-0

= ) (ae bz>

) (b2+e)< e bﬂy-,ie>

+

9 9
If this is to be satisfied when %+%2—= 1, and therefore when e=0, it is possible to

) )
add k ;£_+3_,__1 to either side and then equate the coefficients of &, ¥ The con-
2T q
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stant A can always be chosen so as to make the absolute terms equal. . The elimination
of k from the two equations for C, D in which it occurs will leave the one relation
between them which must be satisfied.

/9 2
Adding % (%-l—%;—l) to the right-hand side, the conditions are

f .a’)__ cﬂ—-b k
a? 2_— +c7~’

6@ _p B LR
s—o=—C S —Dab 7,

and an equation to determine A.

. e L _dA_(2F O\,
The velocity parallel axis of 2" inside cylinder = o= < 7 m) Y.
The velocity parallel axis of %’ outside cylinder = —%z —(?L{—- cb> x.

From the assumed value of A for space outside cylinder

dA )
7y =—Cl@>=b)y ~D(a>~b)y’ q/ﬁfgf:

2\/(a2—cll-7/e)(b2+e){B+D W <a2+e+b§/f;>}

i S
(ﬁ,: —C(a?—=b%)a’ —D(a*—bYa’ Ve

ot +e

'Cﬁ:; 2 /2
~srarr BT (et )

For the contlnmty of the values of' ) Z , at the surface e=0, it is evident that the

coefficients of o :; ; must vanish, Therefore
B4DCZ
Also
2 —6=—0(@—19)—D ¥ (2 —1Y)
2f

Y—b= C@=1)+D (=1
3 E 2
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These are the same equations as those obtained for the continuity of A if k=0,

whence
C__Ezi_ﬁ 4f P+
(o — b9)2{ab 90 }
ab a?+ 0% .
D=2 (T )24}
Therefore

=t S = )

2L 4 2132
= const. +ab{fg;;%§— - } log (\/OL2+6-|—\/Z)3-|-€) %%<d{_éa; )(wf2_yfz)

_0.0_2“__35 (f@gﬁ;)-ca)\/m(&z:e Zﬂyze) |

To examine whether this will make the value of %+V continuous at the surface.

Inside it is known that

%+V=w’2 (1@652 f“’_l_ f>+ (%aﬂ zfd’_{_ ;7;2)-1- arbitrary function of ¢.

a*b? v?

Outside

%-|-V= —%’é—% <<g§ )2+<d;5> >+ arbitrary function of ¢,

where ¢ is the velocity potential.

Now as @ is constant, if ¢ be expressed as a function of &', 4" (e is a function of &, %)
then ¢ can only occur in ¢ through occurring in o', #/.

Therefore
d¢__de da’
dt ~ dx’ dt +

i dy

ay oY v

But it has already been shown that the velocities are continuous at the surface.
Therefore at the surface

%,:2@ <§—%C«3) ; %ﬁ%= — 2’ (J—c-—%d’>

Therefore at the surface

Ly V=moy? <ﬁ_l¢52>—2 2 ( —f—z—-la’ﬂ)-l-# arbitrary function of ¢
7’ — ot & Y e 4 y *

AY
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The difference of the values of %—l—V as given by the above expressions obtained

from the motion inside and outside is

a?

{2 f@(%_}__z_z) —2 fw} (”Z-]-‘%;)-}- arbitrary function of ¢.

As —+ D _.1 choosmg the difference of the arbitrary functions of ¢ to be constant

and equal to 2f®—2 f 2 1 , the value of ~+V will be continuous at the surface.
1)2 p

The current function of the irrotational motion is A.
Therefore the equation to a surface always containing the same particles is

A:g(x’z—l— y’?)+ A=const.

That is, in elliptic coordinates :—

“’(e+u+aﬁ+b2)+ab{ }log(\/a2+e+\/bz+e)
A

Now it € be chosen so as to make the coefficient of v vanish, it will always be
possible to choose the constant so that the equation is satisfied. Therefore the
elliptic cylinders corresponding to the values of e which make the coefficient of
v vanish will be parts of surfaces A=const., and will therefore always contain the
same particles.

These values of e satisfy the equation

O T e e

Solving this in the ordinary way, the roots obtained are

a?40

T

Tt is necessary to examine whether these roots satisfy the above equation, or the
equation obtained by changing the sign of the radical on the right-hand side.
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As positive values of e only are required, it is necessary to examine the relations
between & and f which will make e positive

y(CHE _o
a®®  f

A

If
o <Po_2 ‘4 bogiti
7 7 € 19 positive.
® 2 .. .
:7—”— - e 1s infinite.
i 7 = € 1s negative.
® 2 .o .
= W € 1s Infinite,
2 ® a4+ b . -
a < f< D € 18 positive.
@ a?+ b2 s 76
—_— € 1S zero.
¥a a*b?
A+ @ . .
T < §< 0 € 18 negative.

It the relation between & and f is such as to make e positive, it is necessary to see
whether the equation in € above is satisfied.

4 )
N

R
)
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First suppose

Then

so that
o)
()

V(@@ €) (VP +e)= <

and the equation in e is satisfied.
Next suppose

2 o _d+?
ab " f T o
Now
22_2
R S @
Vertes W/
f/ pETe)
_b_df+_2_

These values, however, do not satisfy the equation in e

Hence it appears that if

@ 2
—o <<=

R+ @
("3 ~3)
=i i
(&) -

the elliptic cylinder for which

399
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is part of one of the surfaces A= const., and therefore always contains the same
particles.

2’2 ?//2
at+e b +e

Hence, if the smooth hollow rigid cylinder =1 rotate about its axis with

uniform angular velocity &, such that

o f> 0.2
e 1 and —o < f< e
(3) =z

<a2+b2__cb

€=

) )
it is possible that the fluid inside the geometrical surface %—I—‘%;: 1 should move

rotationally, and that the fluid between the two cylinders should be moving irrota-
tionally, the rotational and irrotational motion being continuous.

The components of the velocity of the rotational motion parallel to the axes of the
sections of the cylinder by the plane of &, ¥ are

y(%{-— cb> and —w'(i{—d)>

The components of the velocity of the irrotational motion in the same directions are

dA - dA
dy  da
ne.,
aby 1 1 ) dte [4f .AP+D?
ag—bg[z {f<a:9+b2>—w} Z)ﬁti:;—{cﬁ—w ab }
and

aba’ 1,1 . Pie 4f LA+ D?
602—62{2{f<a2+b2>_w} ’\/a2+e_ {ab-w ab }

These expressions for the velocity will not agree with those obtained by HeLMuoLTZ’S

. _ caby /\/m_ __ caba’ Pre_ .Y

Method, viz., u—aﬁ-b9< Pre 1) and v—aﬂ—b2< P e 1>, unless o= e
i.e., in the case of Example II., and the irrotational motion as obtained by HELMBOLTZ'S
Method is not continuous with the rotational motion. The other method suggested

2, 2,
in this paper (in which the potential of the density —i—r (d X+ZZZ—;—2€> is calculated) does

da?

not lead to a result.

13. Example IV. To consider the case in which the vortex sheets are coaxial
circular cylinders, and the molecular rotation is a function of the distance from the
axis.

This investigation will illustrate the reduction of the components of the velocity to
CrLEBsCcH'S forms.
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An  ldn | 1 dA
In this case ——+7n e s

It is supposed here that the initial line from which @ is measured is fixed.
Let R, ® be the radial and tangential velocities, so that

= a function of » only, and X=TF(r).

1 dx

R= rdg =0
dx "
6= _ZZ?__.- —F (7 )
 satisfies the equation
‘1’ d
+R +® rd@ =0

The auxiliary system of equations is

One integral is »=m, the other is t—l—-—- 0=n

¥'(m)
Therefore the integrals are A=F(r), l[i-':t—l—i;;% 0

The most general form of the integral will be y=¥(m, n) where for m and n their
values must be substituted.
Substituting for R and ® in the dynamical equations

dr
—I{F (O
To find ¥,

+R dx+®

402y

Therefore
dx F/(r) d

X0 X0 Ky w )y [(F ()

The auxiliary system is therefore

d_dr_ a0 dy
=TOT - mep

MDCCCLXXXIV. 3 F
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The integrals are
r=m,

t+14’( )6’....fn
x—0{ ="+ s F e | =

therefore the integral of the original system is

X=9{ /{'1* (9)+F/(T)<({Ff(qm)}2‘%} +X(m, n)

Take A\=F(r), y="¥(m, n)
To reduce the components of the velocity to Cruesscr’s forms, it is necessary to find
X and ¥ so that

Uz =0, %\ = _F(r)

dr dr rd8 " a0

i.e. 0=0{~F{;(’) ’"F//(7)+<F/<a,—(&;(o)M{F'() }“'%

OX (1) —rE"(r)

oW oW F'(r)—rE"(r)
T or }

HFO st 0 o)

e F/@) 03X 1 &V F(r)
_F(T)_—T {{ ()}2 +an/(7) bnl"(7)

Whence
oX. o
o TE (), =0

oX or , , ar
S HE() = —HE )P [(F ()]
To satisfy these put W=n®(r) in each, then since m=1, it follows from the first of
these equations that
X==— an(o*)(I)’(r)dr-l-@(n)
Substitute in the second equation, therefore,

—[B)@ ()40 (n) + F () 0(r)=— 3 {F ()3 = [ (P )

Tt is necessary that ®'(n) should be constant, and it will be found that the constant
may be taken as zero.
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Differentiate the last equation with regard to 7.
Therefore

@(,m)z__ Fl(’) F//()

Therefore

rF(aﬂ)F "(7)

=01 B =P )+ f 4 { FOF () = 5 03 H2E = [ )37 |

A=F(r)
p= (15 (70 + )

If the rotationally-moving liquid be bounded by the cylinder A=0, and its radius
be r=a; then F (a)=0
Therefore when

/ / 7 d
r=a, x=0(—aF'(@)+t{ —H(F(@)— [(F ()}
A suitable value for the velocity potential at points outside the cylinder r=a is
— / LF ()} (e
b=0(=aF (@) +{ —H(F (@) — [(F() 2}

This will make the velocity and pressure continuous at the surface of the rotation-
ally-moving liquid. Also the velocity at infinity will be infinitely small.

14. Example V. This case is of interest, because one set of the vortex sheets, viz.,
ar(z—Z)*+b(r’—o?)*=const., consists in part of ring-shaped surfaces. The results
only are given.

If & and b are positive, and the constant <bat, then this represents ring-shaped
surfaces.

The equation in N of Art. 9, includes as a special case

/4% 1 [ d?
< T + i 2))\ const.

r»”

A particular integral is
A=ar*(z—Z)*+b(1r?—a?)?
giving .
r=2ar(z—2Z) and w=Z—2a(z—Z)*—4b(r*—o?)
3F 2
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The value of‘%—kv 18
20b(r*— a2 — 204z —Z)"+ 8abad(z—7)o— (2 —Z) Zi4-0' (t)

where ¢'(¢) is an arbitrary function of ¢.
The differential equation in i has two independent integrals one of which is

ar¥(z—Z)*+b(r*—a?)*= const.=e
and the other

dr

tm§zx/5\/émg= const. =/

where after the integration is performed, the value of ¢ must be substituted for it.
The differential equation in x¥ when solved will give

x=ar(e—2Z) — 2a(ze— L)+ 4baX(z— Z) 42— J%z'%m 0

4: 2 4~d o
—2b(4b+a)at+ Z’;C_z‘b[ \/e__fW+G(e, £)

where G and ¢ are the symbols of arbitrary functions.

. . a d d .
Finally, in order to express 7 as %+)\% and w as Jéx+)\%’ G(e, f) is taken as

(8042a) (bat—ey)f-
Then A= (8b42¢)(e,—e¢), ¥=f, x= above expression with the value of G(e, f) taken

as (8b42a)(bat—ey)f; where e=ar®(z—Z)*+b(r*—a?? and

dr
N v e

X is therefore
. < 4D+ ab Adp
(o) = Salem B btle— Bkt A

__(4b+a)<b“4—g(’>[ \/;L»)_Q-l- an arbitrary function of .

N2 b(r?— ot
1@y Ldy Px ol ; :
The value of 47r< PR i calculated from this is complicated. The writer

has not succeeded in applying any of the methods of this paper to complete this
example. To complete the solution it would be necessary to find a value of the
velocity potential ¢ which is continuous with x all over the surface e=e,, and then to
examine whether the rate of variation of ¢ is equal to the rate of variation of y
normal to surface e=e,. The former part of the work is always theoretically possible,
but it may happen that the latter is not.
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The values of the components of the velocity found however completely solve the
following problem :—
A hollow, smooth, rigid surface of annular form, whose equation is

ar*(z—Z)*~4b(r?—a?)?= const.

moves parallel to the axis of z with arbitrary velocity Z, to find a possible rotational
motion inside it.

APPENDIX.

15. The density inside the elliptic cylinder +—=1 is

¢/l 1
ilEma
T A\
(@*5)
it is required (on account of Examples I, IT.,, and IIL)to calculate the potential inside
and outside.

(It may be noticed that although the density is very great near the axis of the
elliptic cylinder, yet the total mass of matter inside the cylinder —+~—const

however small the constant may be, vanishes. Hence it is not singular that the
potential should be finite).
22 ?/2

The density varies as @y on every ellipse whose equation is ;+ig—const

It will be well to commence by finding the potential of a cylindric shell bounded by
the cylinders

~+—-——1 and )2—|-

(m

(mB)2

where m is a little >1, and where the density varies as xy.
The following are suitable values for the potential

V'=C3 —gw inside

ut ™Y
and /
B o+ B+ 2¢ .
h V=01t o 1) outeide
where " y2 .
a,2+e+,82+e—

and C has to be suitably determined.
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For V' is finite and continuous inside the cylinder and satisfies LAPLACE’S equation.

It is continuous with V at the surface of the cylinder.
vV dv

Also V satisfies LAPLACE'S equation outside the cylinder, and O(Zi—w-, &y both vanish
at infinity.

To find the volume density p of the shell, let én be the thickness of the shell, dn
an element of normal drawn outwards.

Also

av. dV’
I ———l— 47Tp8n 0

Calculating the value of 3 at the surfaco -+ L= 1,i.,at the surfaco >~ =1
alculating e value o dn a € suriace 2 62_ C., € sur: dCe ,82+e
where e=0

2
» being the perpendicular from the centre on the tangent to — =1 at the point =,
P g perp g 2 ,32 p Y.
Similarly at the same point

av’ a—f
n = Clm+ﬁ< +m>

therefore
av_av'_ _ pCoy #—p
dn~ dn . 2 &
on_ Oa
Also ;—— where o+ 8o is semi-major axis of external boundary of shell.
Hence
_ Uy £«
T 8w #2B% S

Now consider the cylindric shell bounded by the two surfaces

9

— & ¥ —
(ma>2+< 6)2 =Land p o s T s sy —

The density at the point , ¥ inside it is

1 1
e\~ )V

_Z';r ) yzz
(;2%5
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To find the potential of the shell, put

1 1
Coyd—f a_ 1 my<?5275>

87 2B Sa 4w <9«2+1/2>2
Z 4L
a

b2
where
—ma, B=mb, Su=adm, 2L —m?
a=ma, B=mb, da=adm, &5+ﬁ=m
Hence
)
C=— 20~—72—:'
o
Therefore potential inside is
208m. 1.8— b
and potential outside is
g_c_S_nfl ab mia? +m?b% + 2¢
m P—a? 2¢(m2a2+e)(m2b2+e)> “

where e is given by the equation

+

m%ﬂ +e 91)2 +e

To calculate the potential of the whole cylinder, put e=m?P so that

22 o

—_—n?
Pip TR

Then the potential of the shell, considered above, at an external point, becomes

2¢dm_ ab a? b2+ 2P
m Pea\" 2/ @+ D)0+ D))

The limits of integration for m are 0 and 1, when integrating to find the potential
of the whole cylinder at an external point.
Therefore the limits of P are o and that value of e which satisfies the equation

“? ~+-2_—=1 and which makes both a®+e and b*+e positive.

o +e

Also

Bre

2mdm=

~{@rmterm) P
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Therefore the potential for the whole cylinder at an external point is

ab r wy( a®+ b2 4+2P ){(a2+P)2+(b“+P)2} dP

g T2/(@+P) P +P) Ca
a?+P T+ P

- 4 PH2P =
| cab 2/ (@+P)O*+P) eab [ P»+P
Slpa™ T 2 Ly T ™ { FHP }

_ A@+P BP4+P o
__cab a?+ b+ 2e cab _]{c_c 2 +e} _1w)
AR i e e A (U PRVA = B

b . .
=yl l— —I—f“— ( sin™! —m —QZ——~— sin~l——e
P—a® 24/ (@*+€)(P*+¢) 2\ NCEY: Rty

cab (1 a? 4+ 0%+ 2¢

To find the potential at an internal point «, .

Suppose that this point lies on the elliptic cylinder )2—|— ” b)2

Then the potential at «, y = potential of matter 1ns1de this cylinder
-+ potential of matter outside it.

The potential of the matter inside )2-|- (,ub)Q_l is obtained by taking the same
x? 2
integral as in finding the potential of the cylinder ——2-!-%5:1 at an external point, but

2°
the limits for m are now-0 and p, 1.e., P= o0 to P=a root of the equatlon +P+ b—gl‘/ﬁ— I

which makes a®+ P, b*+ P both positive, but this root is zero, since +— =

This gives
cab_zy [ (a—0b)*\ | cab N i
P 2 < Sah + tan o tan ”

(w )2 (/tb)2

ne.,

. . %

s— 5+ sinT—F——=—=— sin7!——

2a+bu? " 2 /\/9%_'_% v+
o

The potential of the matter outside the cylinder ~—+

208m u —b
mdP < a4+ a4+
This gives

=1 is the integral of

(na )2 (,ub)?‘

ay between the limits m=pn and m=1.

1\, a—0
<1— ) ({-l—b vy
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Therefore the potential at the internal point «, ¥ is

x
ca—>b cab . a . x
o7 bt an—!___ % P —
2 w+bwy+ R 2 | 1P s Vot

PR

a® b

2 2
Thus if the density at the point @, y inside the elliptic cylinder %-{—‘%2:1 be

1 1 7 . . oL
_£<Z_2_(;> ?%;—2, then the potential at an internal point is
@) |
r
¢ a—b cab | . @ &
227 — -1 @ — gin~l——
YA l-sm T sin™ s
2T
a* b
and the potential at an external point is
cab . a?+ b7+ 2¢ 1 +_ca{9{s. . N
—p* 2/ (@®+e) (b +e) 2 1P \/ag-ﬁs_sm \/@"—{-g/z}
where
22 2
T 7O:L/ -=1.
a?+e B +e

MDCCCLXXXIV. 3a



